Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Phytochemistry ; 219: 113998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253160

RESUMO

In this study, preliminary field-sampling of bioactive fungal strains and bioassay-guided selection were conducted. A number of fungal strains were isolated from sea anemones along the northeastern coast of Badouzi, Keelung, Taiwan. Among them, Arthrinium arundinis MA30 showed significant anti-inflammatory activity and was thus selected for further chemical investigation. After a series of purification and isolation using different chromatographic techniques on the fermented products of A. arundinis MA30, thirty-one compounds were identified, five of which were previously unreported, including arthrinoic acid, hexylaconitic anhydride methyl ester, (3S,8R)-8-hydroxy-3-carboxy-2-methylenenonanoic acid, and arthripenoids G and H. These compounds were subjected to comprehensive spectroscopic data analysis. Of all the isolates, 1,3,5,6-tetrahydroxy-8-methylxanthone and arthripenoid C demonstrated the most distinctive inhibitory activities against nitric oxide production in mouse microglial BV-2 cells, with their respective inhibitory rates being 71% and 81% at 10 µM concentration, and their respective IC50 values were further determined to be 5.3 ± 0.6 and 1.6 ± 0.4 µM. These compounds showed no significant cytotoxicity, and curcumin was used as a positive control in this study.


Assuntos
Ascomicetos , Anêmonas-do-Mar , Animais , Camundongos , Ascomicetos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
2.
Plants (Basel) ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005725

RESUMO

To look in-depth into the phytochemical and pharmacological properties of Taiwan juniper, this study investigated the chemical profiles and anti-lymphangiogenic activity of Juniperus chinensis var. tsukusiensis. In this study, four new sesquiterpenes, 12-acetoxywiddrol (1), cedrol-13-al (2), α-corocalen-15-oic acid (3), 1,3,5-bisaoltrien-10-hydroperoxy-11-ol (4), one new diterpene, 1ß,2ß-epoxy-9α-hydroxy-8(14),11-totaradiene-3,13-dione (5), and thirty-three known terpenoids were successfully isolated from the heartwood of J. chinensis var. tsukusiensis. The structures of all isolates were determined through the analysis of physical data (including appearance, UV, IR, and optical rotation) and spectroscopic data (including 1D, 2D NMR, and HRESIMS). Thirty-four compounds were evaluated for their anti-lymphangiogenic effects in human lymphatic endothelial cells (LECs). Among them, totarolone (6) displayed the most potent anti-lymphangiogenic activity by suppressing cell growth (IC50 = 6 ± 1 µM) of LECs. Moreover, 3ß-hydroxytotarol (7), 7-oxototarol (8), and 1-oxo-3ß-hydroxytotarol (9) showed moderate growth-inhibitory effects on LECs with IC50 values of 29 ± 1, 28 ± 1, and 45 ± 2 µM, respectively. Totarolone (6) also induced a significant concentration-dependent inhibition of LEC tube formation (IC50 = 9.3 ± 2.5 µM) without cytotoxicity. The structure-activity relationship discussion of aromatic totarane-type diterpenes against lymphangiogenesis of LECs is also included in this study. Altogether, our findings unveiled the promising potential of J. chinensis var. tsukusiensis in developing therapeutics targeting tumor lymphangiogenesis.

3.
Bot Stud ; 64(1): 34, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030829

RESUMO

BACKGROUND: Endophytic fungi have proven to be a rich source of novel natural products with a wide-array of biological activities and higher levels of structural diversity. RESULTS: Chemical investigation on the liquid- and solid-state fermented products of Chaetomium globosum Km1226 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-14. Their structures were determined by spectroscopic analysis as three previously undescribed C13-polyketides, namely aureonitol C (1), mollipilins G (2), and H (3), along with eleven known compounds 4-14. Among these, mollipilin A (5) exhibited significant nitric oxide production inhibitory activity in LPS-induced BV-2 microglial cells with an IC50 value of 0.7 ± 0.1 µM, and chaetoglobosin D (10) displayed potent anti-angiogenesis property in human endothelial progenitor cells (EPCs) with an IC50 value of 0.8 ± 0.3 µM. CONCLUSIONS: Three previously unreported compounds 1-3 were isolated and identified. Mollipilin A (5) and chaetoglobosin D (10) could possibly be developed as anti-inflammatory and anti-angiogenic lead drugs, respectively.

4.
Free Radic Biol Med ; 208: 833-845, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776916

RESUMO

The incidence rate of colorectal cancer (CRC) has been increasing and poses severe threats to human health worldwide and developing effective treatment strategies remains an urgent task. In this study, Chaetoglobosin A (ChA), an endophytic fungal metabolite from the medicinal herb-derived fungus Chaetomium globosum Km1126, was identified as a potent and selective antitumor agent in human CRC. ChA induced growth inhibition of CRC cells in a concentration-dependent manner but did not impair the viability of normal colon cells. ChA triggered mitochondrial intrinsic and caspase-dependent apoptotic cell death. In addition, apoptosis antibody array analysis revealed that expression of Heme oxygenase-1 (HO-1) was significantly increased by ChA. Inhibition of HO-1 increased the sensitivity of CRC cells to ChA, suggesting HO-1 may play a protective role in ChA-mediated cell death. ChA induced cell apoptosis via the induction of reactive oxygen species (ROS) and ROS scavenger (NAC) prevented ChA-induced cell death, mitochondrial dysfunction, and HO-1 activation. ChA promoted the activation of c-Jun N-terminal kinase (JNK), and co-administration of JNK inhibitor or siRNA markedly reversed ChA-mediated apoptosis. ChA significantly decreased the tumor growth without eliciting any organ toxicity or affecting the body weight of the CRC xenograft mice. This is the first study to demonstrate that ChA exhibits promising anti-cancer properties against human CRC both in vitro and in vivo. ChA is a potential therapeutic agent worthy of further development in clinical trials for cancer treatment.


Assuntos
Neoplasias Colorretais , Heme Oxigenase-1 , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Apoptose , Neoplasias Colorretais/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
5.
J Agric Food Chem ; 71(35): 13014-13023, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37566786

RESUMO

Antrodia cinnamomea is an endemic species found in Taiwan, known for its medicinal properties in treating various discomforts, including inflammation, diarrhea, abdominal pain, and other diseases. A. cinnamomea contains terpenoids that exhibit numerous bioactivities, making them potential food additives. This discovery piqued our interest in uncovering their biosynthetic pathway. Herein, we conducted functional and structural characterization of a sesquiterpene synthase Cop4 from A. cinnamomea (AcCop4). Through gas chromatography-mass spectrometry analysis, we observed that AcCop4 catalyzes the cyclization of farnesyl pyrophosphate (FPP), primarily producing cubebol. Cubebol is widely used as a long-lasting cooling and refreshing agent in the food industry. The structure of AcCop4, complexed with pyrophosphate and magnesium ions, revealed the closure of the active site facilitated by R311. Interestingly, binding of pyrophosphate and magnesium ions did not cause any significant conformational change in the G1/2 helix of AcCop4, indicating that the apo form is not fully open. This high-resolution structure serves as a solid basis for understanding the biosynthetic mechanism of AcCop4 and supports further production and modification of cubebol for its applications in the food industry.


Assuntos
Antrodia , Sesquiterpenos , Difosfatos/metabolismo , Magnésio/metabolismo , Sesquiterpenos/metabolismo , Antrodia/metabolismo
6.
Gut Microbes ; 15(1): 2183685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843073

RESUMO

Abnormally high circulating androgen levels have been considered a causative factor for benign prostatic hypertrophy and prostate cancer in men. Recent animal studies on gut microbiome suggested that gut bacteria are involved in sex steroid metabolism; however, the underlying mechanisms and bacterial taxa remain elusive. Denitrifying betaproteobacteria Thauera spp. are metabolically versatile and often distributed in the animal gut. Thauera sp. strain GDN1 is an unusual betaproteobacterium capable of catabolizing androgen under both aerobic and anaerobic conditions. We administered C57BL/6 mice (aged 7 weeks) with strain GDN1 through oral gavage. The strain GDN1 administration caused a minor increase in the relative abundance of Thauera (≤0.1%); however, it has profound effects on the host physiology and gut bacterial community. The results of our ELISA assay and metabolite profile analysis indicated an approximately 50% reduction in serum androgen levels in the strain GDN1-administered male mice. Moreover, androgenic ring-cleaved metabolites were detected in the fecal extracts of the strain GDN1-administered mice. Furthermore, our RT - qPCR results revealed the expression of the androgen catabolism genes in the gut of the strain GDN1-administered mice. We found that the administered strain GDN1 regulated mouse serum androgen levels, possibly because it blocked androgen recycling through enterohepatic circulation. This study discovered that sex steroids serve as a carbon source of gut bacteria; moreover, host circulating androgen levels may be regulated by androgen-catabolizing gut bacteria. Our data thus indicate the possible applicability of androgen-catabolic gut bacteria as potent probiotics in alternative therapy of hyperandrogenism.


Assuntos
Androgênios , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Androgênios/metabolismo , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Bactérias , Metabolismo dos Lipídeos
7.
Phytomedicine ; 111: 154655, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36689858

RESUMO

BACKGROUND: Oral cancer is one of the leading causes of cancer-related deaths worldwide. Chemotherapy is widely used in the treatment of oral cancer, but its clinical efficacy is limited by drug resistance. Hence, novel compounds capable of overcoming drug-resistance are urgently needed. PURPOSE: Plumbagin (PG), a natural compound isolated from Plumbago zeylanica L, has been used to treat various cancers. In this study, we investigated the anticancer effects of PG on drug-resistant oral cancer (CR-SAS) cells, as well as the underlying mechanism. METHODS: MTT assays were used to evaluate the effect of PG on the viability of CR-SAS cells. Apoptosis and reactive oxygen species (ROS) production by the cells were determined using flow cytometry. Protein expression levels were detected by western blotting. RESULTS: The results show that PG reduces the viability and causes the apoptosis of CR-SAS cells. PG is able to induce intracellular and mitochondrial ROS generation that leads to mitochondrial dysfunction. Furthermore, endoplasmic reticulum (ER) stress was triggered in PG-treated CR-SAS cells. The inhibition of ROS using N-acetylcysteine (NAC) abrogated the PG-induced ER stress and apoptosis, as well as the reduction in cell viability. Meanwhile, similar results were observed both in zebrafish and in murine models of drug-resistant oral cancer. CONCLUSION: Our results indicate that PG induces the apoptosis of CR-SAS cells via the ROS-mediated ER stress pathway and mitochondrial dysfunction. It will be interesting to develop the natural compound PG for the treatment of drug-resistant oral cancer.


Assuntos
Neoplasias Bucais , Peixe-Zebra , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Apoptose , Linhagem Celular Tumoral , Mitocôndrias , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Estresse do Retículo Endoplasmático
8.
J Agric Food Chem ; 71(2): 1122-1131, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597352

RESUMO

To look in-depth into the traditional Mexican truffle, this study investigated the phytochemical and pharmacological properties of field-collected corn galls and the fermentate of its pathogen Ustilago maydis MZ496986. Here, we established the chemical profiles of both materials via the gradient HPLC-UV method and successfully identified six previously unreported chemical entities, ustilagols A-F (1-6), and 17 known components. Compounds 3, 5, and 9 exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells (IC50 = 6.7 ± 0.5, 5.8 ± 0.9, and 3.9 ± 0.1 µM) without cytotoxic effects. DIMBOA (9) also attenuates lipopolysaccharide (LPS)-stimulated NF-κB activation in RAW 264.7 macrophages (IC50 = 58.1 ± 7.2 µM). Ustilagol G (7) showed potent antiplatelet aggregation in U46619-stimulated human platelets (IC50 = 16.5 ± 5.3 µM). These findings highlighted the potential of corn galls and U. maydis MZ496986 fermentate as functional foods for improving inflammation-related discomforts and vascular obstruction.


Assuntos
Basidiomycota , Ustilago , Animais , Camundongos , Humanos , Ustilago/genética , Fungos , Macrófagos , Zea mays/microbiologia
9.
Biomed Pharmacother ; 158: 114138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535199

RESUMO

Age-related macular degeneration (AMD) is the leading cause of low vision and blindness for which there is currently no cure. Increased matrix metalloproteinase-9 (MMP-9) was found in AMD and potently contributes to its pathogenesis. Resident microglia also promote the processes of chronic neuroinflammation, accelerating the progression of AMD. The present study investigates the effects and mechanisms of the natural compound theissenolactone B (LB53), isolated from Theissenia cinerea, on the effects of RPE dysregulation and microglia hyperactivation and its retinal protective ability in a sodium iodate (NaIO3)-induced retinal degeneration model of AMD. The fungal component LB53 significantly reduces MMP-9 gelatinolysis in TNF-α-stimulated human RPE cells (ARPE-19). Similarly, LB53 abolishes MMP-9 protein and mRNA expression in ARPE-19 cells. Moreover, LB53 efficiently suppresses nitric oxide (NO) production, iNOS expression, and intracellular ROS levels in LPS-stimulated TLR 4-activated microglial BV-2 cells. According to signaling studies, LB53 specifically targets canonical NF-κB signaling in both ARPE-19 and BV-2 microglia. In an RPE-BV-2 interaction assay, LB53 ameliorates LPS-activated BV-2 conditioned medium-induced MMP-9 activation and expression in the RPE. In NaIO3-induced AMD mouse model, LB53 restores photoreceptor and bipolar cell dysfunction as assessed by electroretinography (ERG). Additionally, LB53 prevents retinal thinning, primarily the photoreceptor, and reduces retinal blood flow from NaIO3 damage evaluated by optic coherence tomography (OCT) and laser speckle flowgraphy (LSFG), respectively. Our results demonstrate that LB53 exerts neuroprotection in a mouse model of AMD, which can be attributed to its anti-retinal inflammatory effects by impeding RPE-mediated MMP-9 activation and anti-microglia.


Assuntos
Degeneração Macular , Degeneração Retiniana , Camundongos , Animais , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Microglia/metabolismo , Epitélio Pigmentado da Retina , Pigmentos da Retina/efeitos adversos , Pigmentos da Retina/metabolismo , Lipopolissacarídeos/farmacologia , Degeneração Macular/induzido quimicamente , Degeneração Macular/tratamento farmacológico , Degeneração Retiniana/metabolismo , Modelos Animais de Doenças
10.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558070

RESUMO

In this study, a marine brown alga Sargassum cristaefolium-derived fungal strain, Penicillium sumatraense SC29, was isolated and identified. Column chromatography of the extracts from liquid fermented products of the fungal strain was carried out and led to the isolation of six compounds. Their structures were elucidated by spectroscopic analysis and supported by single-crystal X-ray diffraction as four previously undescribed (R)-3-hydroxybutyric acid and glycolic acid derivatives, namely penisterines A (1) and C-E (3-5) and penisterine A methyl ether (2), isolated for the first time from natural resources, along with (R)-3-hydroxybutyric acid (6). Of these compounds identified, penisterine E (5) was a unique 6/6/6-tricyclic ether with an acetal and two hemiketal functionalities. All the isolates were subjected to in vitro anti-angiogenic assays using a human endothelial progenitor cell (EPCs) platform. Among these, penisterine D (4) inhibited EPC growth, migration, and tube formation without any cytotoxic effect. Further, in in vivo bioassays, the percentages of angiogenesis of compound 3 on Tg (fli1:EGFP) transgenic zebrafish were 54% and 37% as the treated concentration increased from 10.2 to 20.4 µg/mL, respectively, and the percentages of angiogenesis of compound 4 were 52% and 41% as the treated concentration increased from 8.6 to 17.2 µg/mL, respectively. The anti-angiogenic activity of penisterine D (4) makes it an attractive candidate for further preclinical investigation.


Assuntos
Penicillium , Peixe-Zebra , Animais , Humanos , Ácido 3-Hidroxibutírico , Animais Geneticamente Modificados
11.
J Nat Prod ; 85(11): 2667-2674, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346918

RESUMO

Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 µM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 µM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.


Assuntos
Alternaria , Anti-Inflamatórios , Antivirais , Atriplex , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Perileno , Plantas Medicinais , Quinonas , Humanos , Alternaria/química , Alternaria/isolamento & purificação , Atriplex/microbiologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/efeitos dos fármacos , Estrutura Molecular , Perileno/química , Perileno/isolamento & purificação , Perileno/farmacologia , Plantas Medicinais/microbiologia , Quinonas/química , Quinonas/isolamento & purificação , Quinonas/farmacologia , Ácido Tenuazônico/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia
12.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144871

RESUMO

The authors wish to make the following changes to their paper [...].

13.
Phytochemistry ; 204: 113347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36027968

RESUMO

One undescribed C40 terpenoid, calomacroquinoic acid; four undescribed diterpenes, 5α,6α-epoxy-7α-hydroxyferruginol, 15-ethoxysugiol, 7-methoxy-6,7-secoabieta-8,11,13-triene-6,12-diol, and ethyl 7,8-secoabieta-11,14-dioxo-7-ate; two compounds isolated from Nature for the first time, 6ß,7α-dihydroxyferruginol and 12-O-methyltaxochinon; and six known compounds were successfully identified from the bark of Taiwan incense cedar Calocedrus formosana. Structures of all isolates were elucidated by physical data (appearance, ultraviolet, infrared, specific rotation, and X-ray) and spectroscopic data (1D and 2D nuclear magnetic resonance, and high-resolution electron ionization mass spectrometry). The biosynthetic pathway of calomacroquinoic acid is also described in the current study. Nitric oxide production in lipopolysaccharide (LPS)-stimulated BV-2 microglia cells was inhibited by 6,7-dehydroferruginol, 7α,11-dihydroxy-12-methoxy-8,11,13-abietriene, and trans-communic acid. Altogether, the bark of C. formosana possessed several potential natural therapeutics against inflammation-related neuronal diseases.

14.
Int J Med Mushrooms ; 24(9): 73-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004711

RESUMO

Jin-Chan-Hua, a traditional Chinese medicine with numerous pharmaceutical properties, is a biological complex of fungus and cicada larvae. In this study, the fungus Paecilomyces cicadae strain SH1 was obtained and cultivated to produce fruiting bodies in solid-state fermentation by using various cereals as base nutrients. The results indicated that 15 media (e.g., wheat, buckwheat, oatmeal, adzuki bean, black soybean, soybean, mung bean, speckled kidney bean, rice, millet, black glutinous rice, unpolished rice, peanut, pearl barley, and Job's tears) were favorable for high biomass or fruiting body production; thus, we conducted an anti-inflammatory assay in RAW 264.7 cells by using the fermented extracts of these substrates. Among the cereal substrates fermented with P. cicadae SH1, the alcohol extract of fermented oatmeal had the best anti-inflammatory ability with a dose-dependent effect, and it did not reduce the viability of RAW 264.7 cells at a concentration of 200 µg/mL. The results demonstrated that oatmeal solid-state fermented by P. cicadae SH1 has potential applications in the prevention or treatment of inflammation. To our knowledge, this study is the first to report on the development of functional foods and nutraceuticals through the solid-state fermentation of oatmeal by P. cicadae.


Assuntos
Cordyceps , Grão Comestível , Anti-Inflamatórios/farmacologia , Cordyceps/química , Fermentação
15.
Antonie Van Leeuwenhoek ; 115(9): 1203-1214, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35908088

RESUMO

A marine, facultatively anaerobic, nitrogen-fixing bacterium, designated strain DNF-1T, was isolated from the lagoon sediment of Dongsha Island, Taiwan. Cells grown in broth cultures were Gram-negative rods that were motile by means of monotrichous flagella. Cells grown on plate medium produced prosthecae and vesicle-like structures. NaCl was required and optimal growth occurred at about 2-3% NaCl, 25-30 °C and pH 7-8. The strain grew aerobically and was capable of anaerobic growth by fermenting D-glucose or other carbohydrates as substrate. Both the aerobic and anaerobic growth could be achieved with NH4Cl as a sole nitrogen source. When N2 served as the sole nitrogen source only anaerobic growth was observed. Major cellular fatty acids were C14:0, C16:0 and C16:1 ω7c, while major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content was 42.2 mol% based on the genomic DNA data. Phylogenetic analyses based on 16S rRNA genes and the housekeeping genes, gapA, pyrH, recA and gyrB, revealed that the strain formed a distinct lineage at species level in the genus Vibrio of the family Vibrionaceae. These results and those from genomic, chemotaxonomic and physiological studies strongly support the assignment of a novel Vibrio species. The name Vibrio salinus sp. nov. is proposed for the novel species, with DNF-1T (= BCRC 81209T = JCM 33626T) as the type strain. This newly proposed species represents the second example of the genus Vibrio that has been demonstrated to be capable of anaerobic growth by fixing N2 as the sole nitrogen source.


Assuntos
Cloreto de Sódio , Vibrio , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Nitrogênio , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/análise , Vibrio/genética
16.
Biomed Pharmacother ; 153: 113351, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785707

RESUMO

Trichodermin (TCD), a trichothecene first isolated from marine Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, the potential effects of TCD on human oral squamous cell carcinoma (OSCC) cells and the underlying molecular mechanisms remain unknown. In this study, the exposure of OSCC cells (Ca922 and HSC-3 cells) to TCD suppressed cell proliferation assessed using MTT assays and colony formation assays. TCD inhibited the migration and invasion of OSCC cells (Ca922 and HSC-3 cells) through the downregulation of matrix metalloproteinase 9. After treatment of OSCC cells with TCD, the G2/M phase was arrested, caspase-related apoptosis (cleaved caspase-3 and PARP expression) was induced, and the protein level of x-linked inhibitor of apoptosis was reduced. Meanwhile, the TCD-induced cell death was reversed by the pan-caspase inhibitor Z-VAD-FMK. Furthermore, TCD diminished mitochondrial membrane potential, mitochondrial oxidative phosphorylation and glycolytic function in OSCC cells. In addition, TCD decreased the levels of histone deacetylase 2 (HDAC-2) and downstream signaling proteins, including phosphorylated STAT3 and NF-κB. Finally, TCD significantly suppressed tumor growth in a zebrafish OSCC xenotransplantation model. Overall, this evidence demonstrates that TCD is a novel promising strategy for the treatment of OSCCs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Animais , Apoptose , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 2 , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais/patologia , Tricodermina/farmacologia , Peixe-Zebra/metabolismo
17.
Phytochemistry ; 200: 113229, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35568258

RESUMO

Marine fungi are regarded as an under-explored source of structurally interesting and bioactive natural products with the potential to provide attractive lead compounds for drug discovery. In this study, several fungal strains were isolated from marine algae collected from the northeastern coast of Taiwan. In the preliminary antimicrobial screening against bacteria and fungi, the ethyl acetate extract of the fermented products of Aspergillus terreus NTU243 derived from a green alga Ulva lactuca was found to exhibit significant antimicrobial activities. Therefore, bioassay-guided separations of the active principle from liquid and solid fermented products of A. terreus NTU243 were undertaken, which resulted in the isolation and purification of 16 compounds. Their structures were elucidated by spectroscopic analysis to be four previously undescribed aspulvinones S-V as well as twelve known compounds. All the isolates were assessed for anti-inflammatory activity by measuring the amount of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 cells, and aspulvinone V, butyrolactone I, and (+)-terrein inhibited 45.0%, 34.5%, and 49.2% of NO production, respectively, at 10 µM concentration. Additionally, zymography showed that the conditioned medium of THP-1 cells post-LPS challenged significantly enhanced matrix metalloproteinase (MMP)-9-mediated gelatinolysis, and pretreatment with aspulvinones U and V significantly attenuated MMP-9-mediated gelatinolysis by 56.0% and 67.8%, separately.


Assuntos
Anti-Infecciosos , Produtos Biológicos , 4-Butirolactona/análogos & derivados , Anti-Infecciosos/farmacologia , Aspergillus , Compostos de Benzilideno , Produtos Biológicos/química , Fungos , Lipopolissacarídeos , Óxido Nítrico
18.
J Sci Food Agric ; 102(14): 6771-6779, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35638177

RESUMO

BACKGROUND: The wild bitter gourd (WBG) is a commonly consumed vegetable in Asia that has antioxidant and hypoglycemic properties. The present study aimed to investigate the anti-adipogenic activities of isolated compounds from WBG on 8-day differentiated cultures of 3 T3-L1 adipocytes that were then stained with Oil Red O (ORO) or diamidino-2-phenylindole (DAPI). RESULTS: ORO stains of the methanol extracts of de-seeded HM86 cultivar of WBG (WBG-M) and the ethyl acetate fractions (WBG-M-EA) showed anti-adipogenic activities against differentiated adipocytes. Two chlorophyll-degraded compounds, pheophorbide a (1) and pyropheophorbide a (2), were isolated from WBG-M-EA. Treatments with 1 (5, 10, and 20 µmol L-1 ) and 2 (2.5, 5, and 10 µmol L-1 ) showed dose-dependent reductions in lipid accumulations and reduced nuclear DAPI stains in differentiated 3 T3-L1 adipocytes. The concentrations for 50% inhibition against lipid accumulations of 1 and 2, respectively, were 16.05 and 7.04 µmol L-1 . Treatments with 1 and 2 showed enhanced lactate dehydrogenase release in the first 4-day cell mitotic clonal expansions during the differentiating cultural processes, although the effect was less on the non-differentiating cultural processes. Thus, 1 and 2 were more toxic to differentiating adipocytes than to non-differentiated pre-adipocytes, which partly resulted in anti-adipogenic activities with lowered lipid accumulations. CONCLUSION: Both 1 and 2 showed anti-adipogenic activities in cell models. These chlorophyll-degraded compounds commonly exist in several vegetables during storage or edible seaweeds, which will provide resources for further investigations aiming to test anti-obesity in animal studies. © 2022 Society of Chemical Industry.


Assuntos
Momordica charantia , Animais , Antioxidantes , Clorofila/análogos & derivados , Hipoglicemiantes/farmacologia , Lactato Desidrogenases , Lipídeos , Metanol , Momordica charantia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
19.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409350

RESUMO

Both in Taiwan and around the world, lung cancer is a primary cause of cancer-related deaths. In Taiwan, the most prevalent form of lung cancer is lung adenocarcinoma, a type of non-small-cell lung carcinoma. Although numerous lung cancer therapies are available, their clinical outcomes are unsatisfactory. Natural products, including fungal metabolites, are excellent sources of pharmaceutical compounds used in cancer treatment. We employed in vitro cell invasion, cell proliferation, cell migration, cell viability, and colony formation assays with the aim of evaluating the effects of coriloxin, isolated from fermented broths of Nectria balsamea YMJ94052402, on human lung adenocarcinoma CL1-5 and/or A549 cells. The potential targets regulated by coriloxin were examined through Western blot analysis. The cytotoxic effect of coriloxin was more efficiently exerted on lung adenocarcinoma cells than on bronchial epithelial cells. Moreover, low-concentration coriloxin significantly suppressed adenocarcinoma cells' proliferative, migratory, and clonogenic abilities. These inhibitory effects were achieved through ERK/AKT inactivation, epithelial-mesenchymal transition regulation, and HLJ1 expression. Our findings suggest that coriloxin can be used as a multitarget anticancer agent. Further investigations of the application of coriloxin as an adjuvant therapy in lung cancer treatment are warranted.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células A549 , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo
20.
Molecules ; 27(5)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268758

RESUMO

The genus Cimicifuga is one of the smallest genera in the family Ranunculaceae. Cimicifugae Rhizoma originated from rhizomes of Cimicifuga simplex, and C. dahurica, C. racemosa, C. foetida, and C. heracleifolia have been used as anti-inflammatory, analgesic and antipyretic remedies in Chinese traditional medicine. Inflammation is related to many diseases. Cimicifuga taiwanensis was often used in folk therapy in Taiwan for inflammation. Phytochemical investigation and chromatographic separation of extracts from the roots of Cimicifuga taiwanensis has led to the isolation of six new compounds: cimicitaiwanins A-F (1-6, respectively). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic data analysis (1D- and 2D-NMR, MS, and UV) and comparison with the literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 3-6 exhibited potent anti-NO production activity, with IC50 values ranging from 6.54 to 24.58 µM, respectively, compared with that of quercetin, an iNOS inhibitor with an IC50 value of 34.58 µM. This is the first report on metabolite from the endemic Taiwanese plant-C. taiwanensis.


Assuntos
Cimicifuga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA